Creating React Applications with Python

A novel approach for achieving Full-Stack Python

Flask npm
a /}

python™ ¢ :/é%'//
Sy |

-’ I
Transcrypt PARCEL

John Sheehan

JennaSys

Creating React Applications with Python
by John Sheehan

Copyright © 2021 by John Sheehan. All rights reserved.
Published May 2021

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor publisher shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

To report errors, please e-mail: rtp@jennasys.com

Source code used in this book is available at:
https:/ /github.com/JennaSys/rtp_demo

For update notifications, subscribe at:
https:/ /pyreact.com

[1346353]

About the Author

John Sheehan graduated with a degree in Computer Science & Engineering from the University
of Illinois at Chicago, and has been programming primarily with Python for over a decade.
As a freelance software developer, they have developed custom business software for scores of
companies throughout the United States. In their free time, John is an avid DIYer, electronics
enthusiast, and musician. They are currently based in sunny Southern California, and are the
meetup organizer for the local Python and Raspberry Pi user groups.

mailto:rtp@jennasys.com?subject=RtP%20Tutorial%20Errata
mailto:rtp@jennasys.com
https://github.com/JennaSys/rtp_demo
https://pyreact.com

Contents

About the Author e

1 Introduction

1.1 Full-Stack Python
1.2 Features of Transcrypt
1.3 npminsteadof pip
2 Tutorial
2.1 Installation e e e
2.2 HelloWorld e e
2.3 SOUICEMAPS . « « v v v v v et et e e e
24 React e e e
2.5 Building a React Application
3 For more...
31 ReacttoPython
3.2 Resources e e e e

Discount Offers!

15
15
16

17

Creating React Applications with Python

Introduction

1.1 Full-Stack Python

Let me start by getting this out of the way: I really like programming in Python, and I'm not a big
fan of JavaScript. But let’s face it, JavaScript is the way of the web, and Python doesn’t run in a
web browser. So end of story, right? Well not so fast, because just like the popular TypeScript
language gets transpiled into JavaScript to run in a web browser, Transcrypt does the same thing
for Python.

Because of the way Transcrypt maps Python data types and language constructs to JavaScript, your
Python code is able to utilize the full ecosystem of JavaScript libraries that exist. Transcrypt acts
as a bridge that enables you to take advantage of existing JavaScript web application technologies
rather than trying to reinvent them. And, it does it in a way that doesn’t significantly affect
application performance over using plain JavaScript, or that requires a large runtime module to
be downloaded to the client. And though we use JavaScript libraries, we don’t have to code in
JavaScript to use their APIs.

1.2 Features of Transcrypt

¢ It’s PIP installable

¢ Python code is transpiled to JavaScript before being deployed

¢ It uses a very small JavaScript runtime (~40K)

¢ It can generate sourcemaps for troubleshooting Python in the browser
* The generated JavaScript is human-readable

¢ The generated JavaScript can be minified

¢ Performance is comparable to native JavaScript

¢ It maps Python data types and language constructs to JavaScript
¢ It acts as a bridge between the Python and JavaScript worlds

¢ It supports almost all Python built-ins and language constructs
¢ It only has limited support for the Python standard library

* Your Python code can “directly” call JavaScript functions

¢ Native JavaScript can call your Python functions

¢ It only supports 3rd party Python libraries that are pure Python

Features of Transcrypt 1

https://www.transcrypt.org

Creating React Applications with Python

1.3 npm instead of pip

Most Python language constructs and built-ins have been implemented in Transcrypt, so working
with standard Python objects like lists, dictionaries, strings, and more will feel just like Python
should. Generally speaking however, third-party Python libraries are not supported unless the
library (and its dependencies) are pure Python.

What this means is that instead of turning to urllib or the requests library when you need to
make an HTTP request from your web browser application, you would utilize window. fetch()
or the JavaScript axios library instead. But you would still code to those JavaScript libraries using
Python.

2 Chapter 1. Introduction

Creating React Applications with Python

Tutorial

2.1 Installation

Getting started with Transcrypt is pretty easy. Ideally, you would want to create a Python virtual
environment for your project, activate it, and then use PIP to install Transcrypt:

$ python3.7 -m venv venv

$ source venv/bin/activate
(for Windows use venv\Scripts\activate)

(venv) $ pip install transcrypt

For the time being, Transcrypt only supports Python 3.7 so you will need to create your virtual
environment with that version.

2.2 Hello World

With Transcrypt installed, we can try a simple Hello World web application to see how it works.
We'll create two files: a Python file with a few functions, and an HTML file that we will open up
in a web browser:

Listing 1: hello.py

def say_hello():
document.getElementById('destination').innerHTML = "Hello World!"

def clear_it():
document.getElementById('destination').innerHTML

nn

Listing 2: hello.html

<!DOCTYPE html>
<html lang="en">
<body>
<script type="module">
import {say_hello, clear_it} from "./__target__/hello.js";
document.getElementById("sayBtn").onclick = say_hello;
document.getElementById("clearBtn").onclick = clear_it;
</script>
<button type="button” id="sayBtn"”>Click Me!</button>
<button type="button"” id="clearBtn">Clear</button>

Hello World 3

https://github.com/JennaSys/rtp_demo/blob/main/hello.py
https://github.com/JennaSys/rtp_demo/blob/main/hello.html

Creating React Applications with Python

<div id="destination"></div>
</body>
</html>

We then transpile the Python file with the Transcrypt CLI:
(venv) $ transcrypt --nomin --map hello

Here, we passed the transcrypt command three arguments:

® —-nomin turns off minification to leave the generated code in a human-readable format
* --map generates sourcemaps for debugging Python code in the web browser
¢ hello is the name of python module to transpile

We can serve up the Hello World application using the built-in Python HTTP server:
(venv) $ python -m http.server

This starts up a webserver that serves up files in the current directory, from which we can open
our HTML file at:

http:/ /localhost:8000/hello.html

[0.0.0.0:8000/hello.html
< M c G] W () NotSecure 0.0.0.0

| Click Me! || Clear |
Hello World!

As you can see with this simple demonstration, we have Python calling methods of JavaScript
objects using Python syntax, and JavaScript calling "Python" functions that have been transpiled.
And as mentioned earlier, the generated JavaScript code is quite readable:

Listing 3 (Generated code): __target__/hello.js

// Transcrypt'ed from Python

import {AssertionError, ... , zip} from './org.transcrypt.__runtime__.js';
var __name__ = '__main__";
export var say_hello = function () {
document.getElementById ('destination').innerHTML = 'Hello World!';
}s
export var clear_it = function () {
document.getElementById ('destination').innerHTML S

};

//# sourceMappingURL=hello.map

4 Chapter 2. Tutorial

Creating React Applications with Python

2.3 Sourcemaps

To demonstrate the sourcemap feature, we can again create two source files: a Python file with a
function to be transpiled, and an HTML file that will be the entry point for our application in the
web browser. This time, our Python file will have a function that outputs text to the web browser
console using both JavaScript and Python methods, along with a JavaScript method call that will
generate an error at runtime:

Listing 4: sourcemap.py

def print_stuff():
console.log(”"Native JS console.log call”)
print("Python print")
console.invalid_method("This will be an error")

Listing 5: sourcemap.html

<!IDOCTYPE html>
<html lang="en">
<body>
<script type="module">
import {print_stuff} from "./__target__/sourcemap.js";
document.getElementById("printBtn").onclick = print_stuff;
</script>
<button type="button" id="printBtn">Print</button>
</body>
</html>

(venv) $ transcrypt --nomin --map sourcemap

This time, with the built-in Python HTTP server started using;:
(venv) $ python -m http.server

We can open our test application at:
http:/ /localhost:8000/sourcemap.html

[7 0.0.0.0:8000/sourcemap.h

< > M N C (R @ @ Notsecure 0.0.0.0

[w ﬂ Elements Console Sources Network Performance Memory Application

I & | top ¥ & | Filter

Mative J5 console.log call

| Print |

Python print

@ »Uncaught TypeError: console.invalid method is not a function
at HTMLButtonElement.print stuff (sourcemap.py:4)

>

Sourcemaps 5

https://github.com/JennaSys/rtp_demo/blob/main/sourcemap.py
https://github.com/JennaSys/rtp_demo/blob/main/sourcemap.html

Creating React Applications with Python

If you open the developer console in the web browser and then click the button, the first two
calls will execute, printing the text to the web browser console. The call to the JavaScript
console.log() method behaves as you would expect. But as you can see here, the Python
print() function ends up getting transpiled to call the JavaScript console.log() method as
well.

The third function call generates an error since we are trying to call a nonexistent method of the
JavaScript console object. However, what’s nice in this case is that the sourcemap can direct us to
the cause of the problem in our Python source file. So, even though it is the generated JavaScript
that is actually running in the web browser, using a sourcemap, we can still view our Python code
right in the web browser and see where the error occurred in the Python file as well.

[0.0.0.0:8000/sourcemap.h

< "] (&) @ @ () MotSecure 0.0.0.0

| Print | [w ﬂ Elements Console Sources Network Performance Memory Application Security
Page Filesystem % : [4 sourcemap.py %
v [top def print_stuff():

console.log("Native JS console.log call™)
print{"Python primt")
console.invalid method("This will be an error”)} @

¢ 0.0.0.0:8000
v _ karget__
org.transcrypt.__runtime__js
org.transcrypt.__runtime__.py
sourcemap.js

b L bJ

sourcemap.py
B sourcemap.html

2.4 React

Now that we’ve seen how Transcrypt lets us make calls to JavaScript, let’s step it up and use
Transcrypt to make calls to the React library. We'll start with another simple Hello World application
again, but this time doing it the React way. We'll stick with the two source files: a python file to be
transpiled and an HTML file that will be opened in a web browser. The HTML file will be doing a
little extra work for us in that it will be responsible for loading the React JavaScript libraries.

Listing 6: hello_react.py

useState = React.useState
el = React.createElement

def App():
val, setVal = useState("")

def say_hello():
setVal("Hello React!")

6 Chapter 2. Tutorial

https://github.com/JennaSys/rtp_demo/blob/main/hello_react.py

Creating React Applications with Python

def clear_it():
setval("")

return [
el('button', {'onClick': say_hello}, "Click Me!"),
el('button', {'onClick': clear_it}, "Clear"),
el('div', None, val)

]

def render():
ReactDOM. render (
el (App, None),
document.getElementById('root"')

)

document.addEventListener('DOMContentLoaded', render)

Listing 7: hello_react.html

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8"/>
<script crossorigin
src="https://unpkg.com/react@16/umd/react.production.min.js">
</script>
<script crossorigin
src="https://unpkg.com/react-dom@16/umd/react-dom.production.min.js">
</script>
<script type="module" src="__target__/hello_react.js"></script>
</head>
<body>
<div id="root">Loading...</div>
</body>
</html>

Now transpile the Python file with Transcrypt:
(venv) $ transcrypt --nomin --map hello_react

Once again, after Transcrypt is done generating the JavaScript files, start up the built-in Python
HTTP server using:
(venv) $ python -m http.server

Then open the demo React application at:
http:/ /localhost:8000/hello_react.html

React 7

https://github.com/JennaSys/rtp_demo/blob/main/hello_react.html

Creating React Applications with Python

[localhost:8000/hello_reac
4 M C M T localhost

| click Me! | Clear | v ol Elements Console Sources MNetwork Performance Memory Application Secu
Hello React!
~=html lang="en == 5
¥ <head

meta charset="utf-8
script crossorigin src="https:/funpkg.com/react@le/umd/ react.production.min.js

/seript
script crossorigin src="https://unpkg.com/react -dom@l6/umd/react-dom.production.min.js
fscript
script type="module” src target fhello _react.js fscript
fhead
v <body

v<div id="root
button=Click Me!=/button
button=Clear=/button
div=Hello React!=/diw
fdiv
/body
Shtml

While functionally the same as the first demo application we did, this time React adds dynamically
generated HTML as a child of a specified element - in this case, the "root" div.

Here, we added some convenience variables, useState and el, to map the global React methods
to local Python variables. The React createElement () method is the workhorse of the library
and is used to generate HTML elements in the browser dynamically.

React is declarative, functional, and is based on state. What this means, is that you define the
view, and then React handles when and how it gets updated when there are changes in state. By
design, React state variables are immutable and use a setter function to make updates. This helps
React to know when changes to state occur, so it can then re-render the view as needed. In this
example, we used the React useState() method to create the val variable and its corresponding
setVal () setter function.

The return statement of a React functional component generally consists of a number of nested
and chained calls to the React createElement () function that collectively form a tree structure
of HTML elements and/or React components. This is where the view is declaratively defined. It
may take some time to get more comfortable with this if you are not used to doing functional
programming in Python.

The ReactDOM render () function takes the top-level React component and a reference to the
HTML element to attach it to in the DOM. This is where it adds the dynamically generated HTML
tree that React produces as a child of the specified element.

2.5 Building a React Application

Having done a simple React application, let’s now create one that has a few more moving parts.
This demo will take a value entered through the UI and add it to a list when submitted.

8 Chapter 2. Tutorial

Creating React Applications with Python

Most web applications of any utility will get large enough to where it becomes too unwieldy to
manage manually. This is where package managers and application bundlers come into play. For
this next example, we'll use the Parcel bundler to build and bundle the application so you can see
what this developer stack might look like for larger applications.

First, we need to install the necessary JavaScript libraries to support the development toolchain.
This does require Node.js to be installed on your system so that we can use the Node Package
Manager. We start by initializing a new project and installing the Parcel bundler library along
with the plug-in for Transcrypt:

$npm init -y
$ npm install parcel-bundler --save-dev
$ npm install parcel-plugin-transcrypt --save-dev

Then we can install the React libraries:
$ npm install react@16 react-dom@16

Because of a version incompatibility, there is a file in the current Transcrypt plug-in that requires
a patch. The file in question is:
/node_modules/parcel-plugin-transcrypt/asset.js

In that file, change line 2 that loads the Parcel Logger module from this:

const logger = require('parcel-bundler/src/Logger');

to this:

const logger = require('@parcel/logger/src/Logger');

Once this modification is made to change the location of the Parcel Logger module, the Transcrypt
plug-in for Parcel should be working.

NOTE FOR WINDOWS USERS:

For those of you using Windows, two more changes need to be made to the asset.js file for it to
work in Windows environments. The first is to modify the default Transcrypt build configuration
to just use the version of Python that you set your virtual environment up with.

To do that, change line 14 that defines the Transcrypt command to simply use python instead of
python3, changing it from this:

"command”: "python3 -m transcrypt”,
to this:
"command”: "python -m transcrypt”,

Building a React Application 9

https://nodejs.org/en/download/

Creating React Applications with Python

The second change has to do with modifying an import file path so that it uses Windows-style
back-slashes instead of the Linux/Mac style forward-slashes. For this modification, we can use a
string replace () method on line 143 to make an inline correction to the file path for Windows
environments. So change this line:

this.content = ‘export x from "${this.importPath}";";

to this:

this.content = ‘export * from "${this.importPath.replace(/\\/g, '/')}";";

At some point, I would expect that a modification will be incorporated into the parcel-plugin-
transcrypt package so that this hack can be avoided in the future.

Now that we have a bundler in place, we have more options as to how we work with JavaScript
libraries. For one, we can now take advantage of the Node require() function that allows us
to control the namespace that JavaScript libraries get loaded into. We will use this to isolate our
Python-to-JavaScript mappings to one module, which keeps the rest of our code modules all pure
Python.

Listing 8: pyreact.py

__pragma__ ('skip')
def require(lib):
return lib

class document:
getElementById = None
addEventListener = None
__pragma__ ('noskip')

Load React and ReactDOM JavaScript libraries into local namespace
React = require('react')
ReactDOM = require('react-dom")

Map React javaScript objects to Python identifiers
createElement = React.createElement
useState = React.useState

def render(root_component, props, container):
"""Loads main react component into DOM"""

def main():
ReactDOM. render(
React.createElement(root_component, props),

10 Chapter 2. Tutorial

https://github.com/JennaSys/rtp_demo/blob/main/pyreact.py

Creating React Applications with Python

document.getElementById(container)

)

document.addEventListener('DOMContentLoaded', main)

At the top of the file, we used one of Transcrypt’s __pragma__ compiler directives to tell it
to ignore the code between the skip/noskip block. The code in this block doesn’t affect the
transpiled JavaScript, but it keeps any Python linter that you may have in your IDE quiet by
stubbing out the JavaScript commands that are otherwise unknown to Python.

Next, we use the Node require() function to load the React JavaScript libraries into the module
namespace. Then, we map the React createElement () and useState() methods to module-level
Python variables as we did before. As we’ll see shortly, this will allow us to import those variables
into other Python modules. Finally, we moved the render () function we created previously into
this module as well.

Now that we have the JavaScript interface somewhat self-contained, we can utilize it in our
application:

Listing 9: app.py

from pyreact import useState, render, createElement as el

def ListItems(props):
items = props['items']
return [el('1li', {'key': item}, item) for item in items]

def App():
newltem, setNewItem = useState("")
items, setItems = useState([])

def handleSubmit(event):
event.preventDefault()
setItems(items.__add__(newItem))
setItems(items + [newItem]) # __:opov
setNewItem("")

def handleChange(event):
target = event['target']
setNewItem(target['value'])

return el('form', {'onSubmit': handleSubmit},
el('label', {'htmlFor': 'newItem'}, "New Item: "),
el("input', {'id': 'newItem',
'onChange': handleChange,
'value': newItem
}

D¢
el("input', {'type': 'submit'}),

Building a React Application 11

https://github.com/JennaSys/rtp_demo/blob/main/app.py

Creating React Applications with Python

el('ol", None,
el(ListItems, {'items': items})
)

render (App, None, 'root')

As mentioned before, we import the JavaScript mappings that we need from the pyreact.py
module, just like we would any other Python import. We aliased the React createElement()
method to el to make it a little easier to work with.

If you're already familiar with React, you're probably wondering at this point why we’re calling
createElement () directly and not hiding those calls behind JSX. The reason has to do with the
fact that Transcrypt utilizes the Python AST module to parse the PY files, and since JSX syntax is
not valid Python, it would break that. There are ways to utilize J[SX with Transcrypt if you really
wanted to, but in my opinion the way you have to do it kind of defeats the purpose of using JSX
in the first place.

In this module, we created two functional React components. The App component is the main
entry point and serves as the top of the component tree that we are building. Here we have two
state variables that we create along with their companion setter functions. The newItem state
variable will hold an entered value that is to be added to the list. The items state variable will
then hold all of the values that have been previously entered.

We then have two functions, one to perform an action when the form submits the value that was
entered, and another that synchronizes the value that is being entered with the state of our React
component.

Then, in the return statement of the App() function, we declare the tree of elements that define
the UL The top of the element tree starts with an HTML form. This allows us to take advantage
of its default submit button, which in this case calls our handleSubmit () function that will add
new values to the list.

In the handleSubmit () function, when adding a new item to our list, we used an in-line compiler
directive to let Transcrypt know that this particular line of code is using an operator overload:

setItems(items + [newItem]) # __:opov®

By default, Transcrypt turns off this capability as it would cause the generated JavaScript to take
a performance hit if it were enabled globally due to the overhead required to implement that
feature. If you’d rather not use the compiler directive to enable operator overloading only where
needed, in a case like this you could also call the appropriate Python operator overload dunder
method directly as shown in the commented line just above it.

Inside (or below) that, we have an input element for entering new values along with a corre-
sponding label element that identifies it in the UL The input element has the handleChange()
function as its onChange event handler that keeps the React state synced up with what the Ul is
showing.

12 Chapter 2. Tutorial

Creating React Applications with Python

Next in the element tree is the list of values that have already been entered. These will be displayed
in the UI using an HTML ordered list element that will number the items that are added to it.

This brings us to this module’s second functional component, ListItems, that renders the values
in our items state variable as HTML 1i elements. The items are passed into this component as a
property that we deconstruct into a local variable. From there, we use a Python list comprehension
to build the list of 11 elements by iterating through the items.

The last step is to call the imported render () function that will attach our App React component
to the DOM hook point identified by 'root"' in the HTML file:

render (App, None, 'root')

You'll notice that because we put all of the Python-to-JavaScript mappings in the pyreact.py
module, that this module can be 100% pure pythonic Python. No mixing of languages, no weird
contortions of the Python language, and no JavaScript!

To complete this demo, we now just need an HTML entry point that we can load into a web
browser:

Listing 10: index.html

<!DOCTYPE html>
<html lang="en">
<head>
<script src="app.py"></script>
<title>React to Python</title>
</head>
<body>
<div id="root"></div>
</body>
</html>

This time, instead of running Transcrypt directly, we can run the parcel command using the
Node npx package runner. And thanks to the Transcrypt Parcel plugin, it will also run Transcrypt
for us and bundle up the generated JavaScript files:

(venv) $ npx parcel --log-level 4 --no-cache index.html
This also starts up the Parcel development webserver that will serve up the generated content

using a default route at:
http:/ /localhost:1234

Building a React Application 13

https://github.com/JennaSys/rtp_demo/blob/main/index.html

[React to Python

Creating React Applications with Python

< > WM C m T O hetpy/localhost: 1234
New Item: | | Submit | [w ﬂ Elements Console Sources Network
- == 50
1. Item One =html lang="en
<head
2. Item Two M
3] Th <script src="/app.12cad815.js"=></script=
- ltem ree =title=React to Python=/title=
=/head
v <body
v=div id="root
v=form lpchecked="1
<label for="newItem"=New Item: </label
<input id="newItem" value

=input type="submit
v=ol=
v=li=
rimarker
"Item One"
=f11
w=li=
Pimarker
"Item Two"
=/11
vali=
rimarker
"Item Three"
<fli
=fol
=/form
=fdiv=
=/body
=/html

Performance

And with this, we have the foundational basis for building React applications using Python!

14

Chapter 2. Tutorial

Creating React Applications with Python

For more...

3.1 React to Python

If you are interested in learning more details about what is presented here, the React to Python
book dives a lot deeper into what is needed to develop complete web applications using this
approach.

REtACT
o
PYTHON

Creating React Front-End Web Applications

with Python

FX

John Sheehan

React to Python 15

https://pyreact.com
https://pyreact.com

Creating React Applications with Python

The book Includes:

¢ Setting up the required developer environment tools
¢ Creating CRUD Forms

¢ Asynchronous requests with a Flask REST service

¢ Basics of using the Material-UI component library

¢ Single Page Applications

* Basic user session management

¢ SPA view Routing

¢ Incorporating Google Analytics into your application
¢ Walks you through building a complete demo project

The C Programming Language X

The C Programming Language Computers & Tech v () Fiction

® Non-Fiction
Kernighan & Ritchie o

- Paperback - 0131103628

06/14/1986 m|

Good

3 DELETE

3.2 Resources

¢ Source Code:
https:/ /github.com/JennaSys/rtp_demo

¢ Transcrypt Site:
https:/ /www.transcrypt.org

¢ Transcrypt GitHub:
https:/ /github.com/qquick/Transcrypt

* React to Python Book:
https:/ /pyreact.com

16 Chapter 3. For more...

https://rtp.jennasys.com
https://rtp.jennasys.com
https://github.com/JennaSys/rtp_demo
https://www.transcrypt.org
https://github.com/qquick/Transcrypt
https://pyreact.com

Discount Offers!

If you are looking to further explore using Python to create React applications and are interested
in purchasing the React to Python book, the following discounts are available for a limited time:

¢ Use the link below to get 30% off the list price of the E-book on Leanpub (you must use this
link!):

https:/ /leanpub.com/rtp/c/rtp21tutorial30
e Use the coupon code rtp21tutorial2@ at checkout on Aerio/Ingram to get 20% off the list

price of a print copy of React to Python:
https:/ /shop.aer.io/JennaSys

These offers expire December 31, 2021 and are only valid at the points of purchase indicated.

Specials 17

https://leanpub.com/rtp/c/rtp21tutorial30
https://shop.aer.io/JennaSys

18

	About the Author
	Introduction
	Full-Stack Python
	Features of Transcrypt
	npm instead of pip

	Tutorial
	Installation
	Hello World
	Sourcemaps
	React
	Building a React Application

	For more...
	React to Python
	Resources

	Discount Offers!

